# Transient gravity wave response to an oscillating pressure

# By JOHN W. MILES<sup>†</sup>

Department of Engineering and Institute of Geophysics, University of California, Los Angeles

(Received 18 September 1961)

The gravity-wave response of a semi-infinite liquid to the oscillating pressure  $P\delta(x) \exp(i\omega t)$  is given in an asymptotic form that is uniformly valid through the transition zone that separates the dispersion-controlled precursor and the monochromatic steady state. The same problem has been considered previously by Stoker (1957), but his initial conditions were spurious, and he did not seek a uniformly valid asymptotic representation.

# 1. Statement of the problem

We consider the transient development of two-dimensional gravity waves on a semi-infinite body of liquid following the application of the pressure

$$p(x,t) = P\delta(x) e^{i\omega t} H(t), \qquad (1.1)$$

or, more generally, 
$$p(x,t) = \delta(x) F(t)$$
 (1.2)

to the free surface y = 0. P denotes the complex amplitude of the total force per unit width (the imaginary parts of complex expressions are to be discarded in the final reckoning, according to the usual convention),  $\delta(x)$  the Dirac delta function,  $\omega$  the angular frequency, and H(t) the Heaviside step function. Letting  $\phi(x, y, t)$  denote the velocity potential,  $\eta(x, t)$  the free-surface displacement, g the acceleration of gravity, and  $\rho$  the density of the liquid, we then have the following initial-value problem for the determination of  $\phi$  and  $\eta$ :

$$\phi_{xx} + \phi_{yy} = 0, \tag{1.3}$$

$$\phi_y = \eta_t \quad \text{at} \quad y = 0, \tag{1.4}$$

$$\phi_t + g\eta = -p/\rho \quad \text{at} \quad y = 0,$$
 (1.5)  
 $\phi = \eta = 0 \quad \text{at} \quad t = 0.$  (1.6)

and

with

The problem posed by 
$$(1.2)$$
– $(1.5)$ , together with the initial conditions

$$\phi = \phi_t = 0 \quad \text{at} \quad t = 0, \tag{1.6S}$$

has been considered previously by Stoker (1957) with the implicit assertion that these initial conditions are identical with those of (1.6). In fact,  $\eta(x, 0+) = 0$ implies  $\phi_l(x, y, 0+) = 0$  only if p(x, 0+) = 0. The primary motivation of Stoker's analysis was to demonstrate that the limiting form of  $\phi(x, y, t)$  as  $t \to \infty$  is identical with Lamb's steady-state solution (1904) and that this limiting form satisfies

† Now at Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra.

Fluid Mech. 13

(1.6)

John W. Miles

a radiation condition as  $|x| \to \infty$ . As might have been expected, the substitution of the initial conditions (1.6S) for those of (1.6) has no effect on this conclusion.<sup>†</sup>

Our purpose in the present analysis, aside from correcting Stoker's formulation, is to examine in more detail the nature of the transient wave front. Remarking that the appropriate scales for t and x are  $1/\omega$  and  $g/\omega^2$ , we may anticipate the dominant features of this wave front as follows.

(a) If  $g/\omega^2 \ll x \ll gt/\omega$  the free-surface displacement will approximate the asymptotic form of Lamb's (1904) steady-state solution, namely

$$\eta(x,t) \sim i(P\omega^2/\rho g^2) \exp\left\{i\omega[t - (\omega/g)x]\right\},\tag{1.7}$$

corresponding to a monochromatic gravity wave advancing with the phase velocity  $g/\omega$ .

(b) If  $g/\omega^2 \ll gt/\omega \ll x$  the free-surface displacement will be essentially dispersive in character and will be given by the classical Cauchy–Poisson solution (Lamb 1932) for an impulse (in time) of complex amplitude

$$\int_{0}^{\infty} P \exp(i\omega t) dt = i(P/\omega),$$
  
$$\eta(x,t) \sim i(Pg^{\frac{1}{2}}t^{2}/4\pi^{\frac{1}{2}}\rho\omega x^{\frac{5}{2}}) \cos[(gt^{2}/4x) + \frac{1}{4}\pi].$$
(1.8)

namely

(c) The asymptotic solutions of (1.7) and (1.8) will be separated by a transition zone that advances with the group velocity  $g/2\omega$  and has a width of  $O(g\omega^{-\frac{3}{2}t\frac{1}{2}})$  as  $\omega^2 x/g \to \infty$ ; see (4.9) below. The asymptotic form of the free-surface displacement in this zone will be

$$\eta(x,t) = (A+iB)(1.7)\left[1 + O(\omega^2 x/g)^{-\frac{1}{2}}\right],\tag{1.9}$$

where A + iB may be regarded as the normalized complex amplitude of the motion in the transition zone. The envelope of the oscillatory motion in this zone then will be proportional to  $(A^2 + B^2)^{\frac{1}{2}}$ .

We shall proceed by first determining (in § 2) a formal solution to (1.1)-(1.6). We then shall determine (in § 3) an asymptotic representation of  $\eta$  that is uniformly valid throughout the transition zone and that has the limiting forms of (1.7)-(1.9).

## 2. Formal solution

We choose as our starting point the Cauchy-Poisson solution, say  $\phi = \Phi$ , obtained by setting  $F(t) = \delta(t)$  in (1.2)-(1.6), viz. (Lamb 1932)

 $\sigma$ 

$$\Phi(x, y, t) = -\frac{1}{\pi\rho} \int_0^\infty e^{ky} \cos\left(kx\right) \cos\left(\sigma t\right) dk, \qquad (2.1)$$

where

$$= (gk)^{\frac{1}{2}}.$$
 (2.2)

We then may construct the more general solution

$$\phi(x, y, t) = \int_0^t F(u) \, \Phi(x, y, t - u) \, du \tag{2.3}$$

by superposition.

 $<sup>\</sup>dagger$  Stoker (1957) also posed the spurious initial conditions (1.6S) in his analysis of unsteady waves created by a prescribed pressure on the surface of a running stream. Wurtele (1955) has given a correct solution for a special case of the running-stream problem with results that have some similarity to those presented here.

Substituting the explicit time-dependence  $F(t) = P \exp(i\omega t)$  into (2.3), we may place the result in the form

$$\phi = \frac{P}{\pi\rho} \left( \frac{\partial}{\partial t} + i\omega \right) \int_0^\infty e^{ky} \cos\left(kx\right) \left[ \frac{\cos\left(\sigma t\right) - \cos\left(\omega t\right)}{\sigma^2 - \omega^2} \right] dk.$$
(2.4)

Replacing the initial conditions (1.6) by (1.6S), we obtain

$$\phi = \frac{iP}{\pi\rho} \left( \frac{\partial}{\partial t} + i\omega \right) \int_0^\infty e^{ky} \cos\left(kx\right) \left[ \frac{\omega \sin\left(\sigma t\right) - \sigma \sin\left(\omega t\right)}{\sigma(\sigma^2 - \omega^2)} \right] dk$$
$$= i\omega \int_0^t (2.4) dt \tag{2.48}$$

in place of (2.4); this is equivalent to Stoker's result (1957). Assuming the asymptotic time-dependence exp( $i\omega t$ ), the operators  $i\omega$  and  $\int_{0}^{t}$  () dt cancel, and we have the anticipated result that (2.4) and (2.4S) are identical in the limit  $t \rightarrow \infty$ . We also observe that the integrands of both (2.4) and (2.4S) are bounded at  $\sigma = \omega$ .

We may construct the surface-displacement similarly,

$$\eta(x,t) = \int_0^t F(u) N(x,t-u) \, du, \qquad (2.5)$$

$$N(x,t) = -g^{-1} \lim_{y \to 0^{-}} \Phi_t(x,y,t).$$
 (2.6)

Substituting (2.1) into (2.6), integrating the result with respect to x in order to permit the passage to the limit y = 0 - prior to the integration, and introducing the change of variable  $k = \sigma^2/g$ , we obtain  $\ddagger$ 

$$N(x,t) = -\frac{2}{\pi\rho g} \frac{\partial}{\partial x} \int_0^\infty \sin\left(\frac{\sigma^2 x}{g}\right) \sin\left(\sigma t\right) d\sigma.$$
(2.7)

#### 3. Asymptotic representation of surface displacement

We may obtain an asymptotic representation of N(x, t) as  $x \to \infty$  and t = O(x)from the stationary-phase approximation  $\S$  (already cited in (1.8) above)

$$N(x,t) \sim \frac{g^{\frac{1}{2}t^2}}{4\pi^{\frac{1}{2}}\rho x^{\frac{5}{2}}} \cos\left(\frac{gt^2}{4x} + \frac{1}{4}\pi\right) + O(x^{-\frac{3}{2}}).$$
(3.1)

We have assumed x > 0, but we also could replace x by |x| in (3.1) et seq. Substituting (3.1) and  $F(t) = P \exp(i\omega t)$  into (2.5), we obtain

$$\eta(x,t) \sim \frac{Pg^{\frac{1}{2}}}{4\pi^{\frac{1}{2}}\rho x^{\frac{5}{2}}} \int_{0}^{t} e^{i\omega(t-u)} \cos\left(\frac{gu^{2}}{4x} + \frac{1}{4}\pi\right) u^{2} du.$$
(3.2)

 $\dagger$  We may also deduce (2.5) and (2.6) from (2.1) and (2.2) through (1.5) after integration by parts.

<sup>†</sup> Cf. Lamb's (1932) result §239(31).

§ Lamb (1932, §239(38)). Lamb does not state the error term, but it follows directly from his analysis.

10-2

John W. Miles

Introducing the dimensionless variables

the wave-front parameter

ξ

$$=\omega^2 x/g$$
 and  $\tau = \omega t$ , (3.3)

$$\theta = \tau/2\xi = gt/2\omega x,\tag{3.4}$$

and the change of variable  $u = (2\xi/\omega)\varphi$ , we may rewrite (3.2) in the form

$$\eta(x,t) = (P\omega^2/\rho g^2) \psi(\xi,\tau),$$
(3.5)

where

$$\begin{split} \psi(\xi,\tau) &= 2(\xi/\pi)^{\frac{1}{2}} \int_{0}^{\theta} e^{2i\xi(\theta-\varphi)} \cos\left(\xi\varphi^{2} + \frac{1}{4}\pi\right) \varphi^{2} d\varphi + O(\xi^{-\frac{3}{2}}) \\ &= (\xi/\pi)^{\frac{1}{2}} e^{2i\xi\theta} \left[ e^{i(\frac{1}{4}\pi-\xi)} \int_{0}^{\theta} e^{i\xi(\varphi-1)^{2}} \varphi^{2} d\varphi + e^{i(\xi-\frac{1}{4}\pi)} \int_{0}^{\theta} e^{-i\xi(\varphi+1)^{2}} \varphi^{2} d\varphi \right] + O(\xi^{-\frac{3}{2}}). \end{split}$$

$$(3.6)$$

Considering first the last integral in (3.6), we may integrate by parts to obtain

$$\int_{0}^{\theta} e^{-i\xi(\varphi+1)^{2}} \varphi^{2} d\varphi = \left[i\theta^{2}/2\xi(\theta+1)\right] e^{-i\xi(\theta+1)^{2}} + O(\xi^{-2}).$$
(3.7)

The remaining integral has a point of stationary phase at  $\varphi = 1$  if  $\theta > 1$ . We therefore introduce the change of variable  $v = \varphi - 1$  and proceed as follows:

$$\int_{0}^{\theta} e^{i\xi(\varphi-1)^{2}} \varphi^{2} d\varphi = (1+\frac{1}{2}v) \frac{e^{i\xi v^{2}}}{i\xi} \Big|_{-1}^{\theta-1} + \left(1-\frac{1}{2i\xi}\right) \int_{-1}^{\theta-1} e^{i\xi v^{2}} dv$$
$$= \frac{1}{2} \left(\frac{\pi}{\xi}\right)^{\frac{1}{2}} e^{\frac{1}{4}i\pi} + \int_{0}^{\theta-1} e^{i\xi v^{2}} dv + \left(\frac{\theta+1}{2i\xi}\right) e^{i\xi(\theta-1)^{2}} + O(\xi^{-\frac{3}{2}}). \quad (3.8)$$

Substituting (3.7) and (3.8) into (3.6), we obtain

$$\psi = i e^{i\xi(2\theta-1)} \left[ \frac{1}{2} + \pi^{-\frac{1}{2}} e^{-\frac{1}{4}i\pi} \int_{0}^{\xi^{\dagger}(\theta-1)} e^{iw^{2}} dw \right] + \frac{1}{2}i(\pi\xi)^{-\frac{1}{2}} \left[ \theta^{2}(\theta+1)^{-1} e^{-i(\xi\theta^{2}+\frac{1}{4}\pi)} - (\theta+1) e^{i(\xi\theta^{2}+\frac{1}{4}\pi)} \right] + O(\xi^{-\frac{3}{2}}).$$
(3.9)

This last result is uniformly valid with respect to  $\theta$  in the neighbourhood of  $\theta = 1$ , i.e. in the neighbourhood of the interface  $x = (g/2\omega)t$  that advances with the group velocity  $g/2\omega$ . If  $\theta$  is bounded away from 1 we may introduce the asymptotic approximation

$$\int_{0}^{\xi^{\dagger}(\theta-1)} e^{iw^{2}} dw = \frac{1}{2} \pi^{\frac{1}{2}} e^{\frac{1}{4}i\pi} \operatorname{sgn}\left(\theta-1\right) - \frac{1}{2}i(\theta-1)^{-1} \xi^{-\frac{1}{2}} e^{i\xi(\theta-1)^{2}} + O(\xi^{-\frac{3}{2}}) \quad (3.10)$$

to obtain

$$\psi = i e^{i\xi(2\theta-1)} H(\theta-1) + \frac{1}{2}\theta^2 (\pi\xi)^{-\frac{1}{2}} \left[ (\theta-1)^{-1} e^{i(\xi\theta^2 - \frac{1}{4}\pi)} + (\theta+1)^{-1} e^{-i(\xi\theta^2 - \frac{1}{4}\pi)} \right] + O(\xi^{-\frac{3}{2}}).$$
(3.11)

Returning now to the original variables through (3.3)–(3.5), we may transform (3.11) to

$$\eta = i(P\omega^{2}/\rho g^{2}) \exp \left\{ i\omega[t - (\omega/g) x] \right\} H[t - (2\omega/g) x] + (Pg^{\frac{1}{2}}/4\pi^{\frac{1}{2}}\rho\omega) t^{2}x^{-\frac{5}{2}}[(gt/2\omega x)^{2} - 1]^{-1} \times \left\{ (gt/2\omega x) \cos \left[ (gt^{2}/4x) - \frac{1}{4}\pi \right] + i \sin \left[ (gt^{2}/4x) - \frac{1}{4}\pi \right] \right\} \times \left[ 1 + O(\omega^{2}x/g)^{-\frac{1}{2}} \right].$$
(3.12)

Considering the limits  $t \to \infty$  for fixed x and  $x \to \infty$  for fixed t, we then may confirm the results anticipated in (1.7) and (1.8).

#### 4. Asymptotic envelope

Substituting (3.9) into (3.5) and returning to the original variables through (3.3), we may place the result in the form

$$\eta(x,t) = i(P\omega^2/\rho g^2) \left[ A(u) + iB(u) \right] \exp\left\{ i\omega[t - (\omega/g)x] \right\} \left[ 1 + O(\omega^2 x/g)^{-\frac{1}{2}} \right], \quad (4.1)$$

$$A + iB = \frac{1}{2}[1 + C + S + i(S - C)], \qquad (4.2)$$

$$C + iS = \int_0^u e^{\frac{1}{2}i\pi v^2} dv,$$
 (4.3)

$$u = (2\xi/\pi)^{\frac{1}{2}} (\theta - 1) = (g/2\pi x)^{\frac{1}{2}} [t - (2\omega/g)x].$$
(4.4)

We observe that the Fresnel integrals, C and S, are both odd functions of u.

The result (4.1) describes the asymptotic (as  $\omega^2 x/g \to \infty$ ) form of the free surface displacement in terms of a travelling wave that has the frequency  $\omega$ , the phase velocity  $g/\omega$ , the slowly changing (relative to  $\omega$ ) envelope

$$(|P| \omega^2 / \rho g^2) R(u),$$
  

$$R(u) = (A^2 + B^2)^{\frac{1}{2}},$$
(4.5)

where

and the slowly changing phase angle  $\frac{1}{2}\pi + \tan^{-1}(B/A)$  relative to that of the complex amplitude P. The centre of the normalized envelope R(u), defined by u = 0, advances with the group velocity  $g/2\omega$ ; its distribution is plotted in figure 1.

Regarded as a timewise envelope—i.e. as the envelope measured by an observer at a fixed point x - R(u) rises monotonically to a maximum of 1.17 at u = 1.2 and then enters an oscillatory epoch, in which the asymptotic behaviour is given by (cf. (3.10))

$$R(u) \sim 1 + 2^{-\frac{1}{2}} (\pi u)^{-1} \sin\left(\frac{1}{2}\pi u^2 - \frac{1}{4}\pi\right) + O(u^{-2}). \tag{4.6}$$

We emphasize, however, that (4.6) is a consistent approximation only in so far as  $\theta \ll 1$  and  $\xi^{\frac{1}{2}}(\theta - 1) \gg 1$ ; if  $\xi^{\frac{1}{2}}(\theta - 1) \gg 1$  but  $\theta$  is not small the second term in (4.6) is of the same order as terms already neglected—cf. (3.11). We may define the rise-time T as the time for R to rise from 0.1 to its first maximum,

$$T \doteq 9(x/g)^{\frac{1}{2}}.\tag{4.7}$$

We remark that T is independent of the frequency  $\omega$  and that, by hypothesis,  $\omega T \ge 1$  (by virtue of which we have described the envelope as slowly changing). We also may regard R(-u) as the spacewise envelope at a fixed time, since

$$-u = 2\omega^{\frac{3}{2}}g^{-1}(\pi t)^{-\frac{1}{2}} \left[ x - (g/2\omega) t \right] \left[ 1 + O(\omega^{2}x/g)^{-\frac{1}{2}} \right], \tag{4.8}$$

which is within the approximation already invoked in (4.1). Viewed in this manner, the wave-front envelope rises monotonically to its maximum value as x decreases from  $+\infty$  and then tends in an oscillatory fashion to its steady-state value. We may define the width X of the transition zone, analogously

with T, as the distance between the point at which the precursor reaches 0.1 of the steady-state amplitude and its maximum amplitude,



$$X \doteq 3g\omega^{-\frac{3}{2}}t^{\frac{1}{2}}.\tag{4.9}$$

This work was supported by the Office of Naval Research under contract Nonr 233 (70).

#### REFERENCES

LAMB, H. 1904 On deep water waves. Proc. Lond. Math. Soc. (2), 2, 371.
LAMB, H. 1932 Hydrodynamics, pp. 384-391, 6th ed. Cambridge University Press.
STOKER, J. J. 1957 Water Waves, pp. 174-81, 210-18. New York: Interscience.
WURTELE, M. G. 1955 The transient development of a lee wave. J. Mar. Res. 14, 1.