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Transient gravity wave response to an 
oscillating pressure 

By JOHN W. MILES? 
Department of Engineering and Institute of Geophysics, 

University of California, Los Angeles 

(Received 18 September 1961) 

The gravity-wave response of a semi-infinite liquid to the oscillating pressure 
Pa(%) exp ( iwt )  is given in an asymptotic form that is uniformly valid through 
the transition zone that separates the dispersion-controlled precursor and the 
monochromatic steady state. The same problem has been considered previously 
by Stoker (1957), but his initial conditions were spurious, and he did not seek 
a uniformly valid asymptotic representation. 

1. Statement of the problem 

a semi-infinite body of liquid following the application of the pressure 
We consider the transient development of two-dimensional gravity waves on 

to the free surface y = 0. P denotes the complex amplitude of the total force 
per unit width (the imaginary parts of complex expressions are to be discarded 
in the final reckoning, according to the usual convention), 6(x) the Dirac delta 
function, w the angular frequency, and H ( t )  the Heaviside step function. Letting 
$(x, y, t) denote the velocity potential, ~ ( x ,  t )  the free-surface displacement, 
g the acceleration of gravity, and p the density of the liquid, we then have 
the following initial-value problem for the determination of q5 and 7: 

with 

and 

The problem posed by (l.2)-(1.5), together with the initial conditions 

q5=9t=0 at t = 0 ,  (1.6s) 

has been considered previously by Stoker (1957) with the implicit assertion that 
these initial conditions are identical with those of (1.6). In  fact, q(x, 0 + ) = 0 
implies q51(x, y, 0 + ) = 0 only if p(x ,  0 + ) = 0. The primary motivation of Stoker’s 
analysis was to demonstrate that the limiting form of $(x, y, t )  as t + 00 is identical 
with Lamb’s steady-state solution (1904) and that this limiting form satisfies 
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a radiation condition as 1x1 3 00. As might have been expected, the substitution 
of the initial conditions (1 .6s)  for those of (1.6) has no effect on this conc1usion.t 

Our purpose in the present analysis, aside from correcting Stoker’s formulation, 
is to examine in more detail the nature of the transient wave front. Remarking 
that the appropriate scales fort and x are l / w  and g/w2,  we may anticipate the 
dominant features of this wave front as follows. 

(a )  If g/w2 < x < gt/w the free-surface displacement will approximate the 
asymptotic form of Lamb’s (1904) steady-state solution, namely 

corresponding to a monochromatic gravity wave advancing with the phase 
velocity g/w. 

(b)  If g/w2 < gt/w << z the free-surface displacement will be essentially dis- 
persive in character and will be given by the classical Cauchy-Poisson solution 
(Lamb 1932) for an impulse (in time) of complex amplitude 

JOm Pexp ( iw t )  dt = i ( ~ / w ) ,  

namely q ( x ,  t )  - i(PgHt2/4n4pwx4) cos [(gt2/4x) + &TI. (1.8) 

q(x, t )  i(Pw2/pg2) exp ( iwP  - ( 4 9 )  .I>, (1.7) 

(c) The asymptotic solutions of (1.7) and (1.8) will be separated by a transition 
zone that advances with the group velocity 9/20 and has a width of O(gw-tt4) 
as w2x/g -+ m; see (4.9) below. The asymptotic form of the free-surface displace- 
ment in this zone will be 

(1.9) 
where A +iB may be regarded as the normalized complex amplitude of the 
motion in the transition zone. The envelope of the oscillatory motion in this 
zone then will be proportional to (A2 + B2)4. 

We shall proceed by first determining (in 3 2) a formal solution to (1.1)-(1.6). 
We then shall determine (in 9 3) an asymptotic representation of 7 that is uni- 
formly valid throughout the transition zone and that has the limiting forms of 

V ( X ,  t )  = ( A  +iB) (1.7) [1 i . O ( ~ ~ ~ / g ) - i ] ,  

(1.7)-(1.9). 

2. Formal solution 

obtained by setting P(t) = &(t) in (1.9)-(1.6), viz. (Lamb 1932) 
We choose as our starting point the Cauchy-Poisson solution, say q5 = CD, 

@(z, y, t )  = - - eku cos (kx) cos (at) dk,  (9.1) 

(2.2) 
.nio Sm 0 

where u- = ( g k ) k  
We then may construct the more general solution 

t Stoker (1957) also posed the spurious initial conditions (1.6s) in his analysis of 
unsteady waves created by a prescribed pressure on the surface of a running stream. 
Wurtele (1955) has given a correct solution for a special case of the running-stream 
problem with results that have some similarity to those presented here. 
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Substituting the explicit time-dependence F( t )  = Pexp (iwt) into (2.3), we 
may place the result in the form 

(2.4) 
cos (a t )  - cos (wt )  -1 dk. [ a2 - w2 

p a  m 

9 = + (% + i w )  1 ekg cos ( kx )  
0 

Replacing the initial conditions (1.6) by (1.6S), we obtain 

I dk 
i p  a w sin (at)  - a sin (wt) 9 = np (at + i w )  Sm 0 ek* cos ( kx )  [ v( a2 - w2) 

= io j, (2.4) dt (2 .4s)  

in place of (2.4); this is equivalent to Stoker’s result (1957). Assuming the 

asymptotic time-dependence exp (iwt), the operators iw  and 1; ( ) dt cancel, 

and we have the anticipated result that (2.4) and (2.4s) are identical in the limit 
t --f co. We also observe that the integrands of both (2.4) and (2.4s) are bounded 
a t  a = w. 

We may construct the surface-displacement similarly, 

where? 

y(x ,  t )  = C F ( u )  N ( x ,  t - ZL) du, 

N ( x ,  t )  = - 9-1 lim a t (x ,  y, t ) .  
g+O- 

Substituting (2.1) into (2.6), integrating the result with respect to x in order to 
permit the passage to the limit y = 0 - prior to the integration, and introducing 
the change of variable k = a2/g, we obtain1 

N ( x ,  t )  = -~ - a Irn sin ($) sin (d) da. 
rpgax 0 

(2.7) 

3. Asymptotic representation of surface displacement 

from the stationary-phase approximation (already cited in (1.8) above) 
We may obtain an asymptotic representation of N(x ,  t )  as x + co and t = O(x) 

N ( x , t )  N ~ cos -+in +O(x-%). 
47r*pxQ g*t2 (:: 1 

We have assumed x > 0, but we also could replace x by 1x1 in (3.1) et seq. Sub- 
stituting (3.1) and F( t )  = Pexp (iwt) into (2 .5) ,  we obtain 

(3.2) 

t We may also deduce (2.5) and (2.6) from (2.1) and (2.2) through (1.5) after integration 

$ Cf. Lamb’s (1932) result $239(31). 
$ Lamb (1932, $239 (38)). Lamb does not state the error term, but it follows directly 

by parts. 

from his analysis. 
10-2 



148 John W.  Miles 

Introducing the dimensionless variables 

the wave-front parameter 

and the change of variable u = ( 2 ( / w ) y ,  we may rewrite (3.2) in the form 

where 

( = w2x/g and T = wt, 

8 = T / 2 g  = gt/2UX, 

r ( x ,  t )  = (Pw2/pg2) $(& 71, 

@(t, 7 )  = 2((/77)* Joee2i~(o-q) cos ( 5 9 2  + $77) y2dy + o(g-4) 

(3.5) 

(3.6) 
Considering first the last integral in (3.6), we may integrate by parts to obtain 

The remaining integral has a point of stationary phase at y = 1 if 0 > 1. We 
therefore introduce the change of variable v = '3 - 1 and proceed as follows: 

Substituting (3.7) and (3.8) into (3.6), we obtain 

+ &i(nt)-g [ P ( O  + 11-1 e-iC@+$n) - (0 + 1) ei(Eez+$r)] + o(t-3). (3.9) 

This last result is uniformly valid with respect to 0 in the neighbourhood of 
0 = 1, i.e. in the neighbourhood of the interface x = (g /2w)  t that advances with 
the group velocity g/2w. If 0 is bounded away from 1 we may introduce the 
asymptotic approximation 

to obtain 

4 = i eif(ze-1) ~ ( 0  - 1) + +gz(n()-+ [(/j - 11-1 e W 2 - b )  + (8 + 1 )-I e-i(Se2-fr) 1 + O(E-% 
(3.11) 

Returning now to the original variables through (3.3)-(3.5), we may transform 
(3.11) to 

7 = i (Pw2/pg2)  exp {iw[t - (w /g )  XI> H[t - (2w/g)  x]  

+ (Pgq4774pw) PX-q(gt/2wx)2 - 11-1 
x ( (g t /2wx)  cos [(gt2/4x) - $771 + i sin [ (g t2 /4x)  - $771) 

x [ 1 + O( d x / g ) - q .  (3.12) 
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Considering the limits t --+ 00 for fixed x and x -+ co for fixed t ,  we then may 
confirm the results anticipated in (1.7) and (1.8). 

4. Asymptotic envelope 

(3.3), we may place the result in the form 
Substituting (3.9) into (3.5) and returning to the original variables through 

~ ( x ,  t )  = i(Po2/pg2) [A(u) +iB(u)] exp{iw[t- ( o / g )  x]} [l +O(w2x/g)-*],  (4.1) 

A +iB = &[1 +C+S+i(X-C)], (4.2) 

(4.3) 

u = (2&)4 (8 - 1) = (g/2nx)+ [t - (249) x]. (4.4) 

We observe that the Fresnel integrals, C and S, are both odd functions of u. 
The result (4.1) describes the asymptotic (as 02x/g+co) form of the free 

surface displacement in terms of a travelling wave that has the frequency w,  
the phase velocity g / o ,  the slowly changing (relative to w )  envelope 

(JPI w2/pg2) m), 
where R(u) = (A2+B2)4, (4.5) 

and the slowly changing phase angle + tan-I @ / A )  relative to that of the 
complex amplitude P. The centre of the normalized envelope R(u), defined by 
u = 0, advances with the group velocity g/2w; its distribution is plotted in 
figure 1. 

Regarded as a timewise envelope-i.e. as the envelope measured by an ob- 
server at a fixed point x-R(u) rises monotonically to a maximum of 1.17 at 
u = 1.2 and then enters an oscillatory epoch, in which the asymptotic behaviour 
is given by (cf. (3.10)) 

~ ( u )  N 1 + 2-*(nu)-lsin (inu2- in) + O(u-2). (4.43) 

We emphasize, however, that (4.6) is a consistent approximation only in so far 
as 8 < 1 and @(8 - 1) 9 1; if @(8 - 1) B 1 but 6J is not small the second term in 
(4.6) is of the same order as terms already neglected-cf. (3.11). We may define 
the rise-time T as the time for R to rise from 0.1 to its first maximum, 

T + 9(x/g)*. (4.7) 

We remark that T is independent of the frequency w and that, by hypothesis, 
w T  9 1 (by virtue of which we have described the envelope as slowly changing). 

We also may regard R( - u) as the spacewise envelope at a fixed time, since 

- u = 2wQg-l(nt)-* [x - (g /2w)  t ]  [l + o(w2x/g)-*], (4.8) 

which is within the approximation already invoked in (4.1). Viewed in this 
manner, the wave-front envelope rises monotonically to its maximum value 
as x decreases from + co and then tends in an oscillatory fashion to its steady- 
state value. We may define the width X of the transition zone, analogously 
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with T, as the distance between the point at which the precursor reaches 0-1 of 
the steady-state amplitude and its maximum amplitude, 

x -2. 3gw-qt .  (4.9) 

FIGURE 1. The envelope R(u), as given by equations (4.2)-(4.6). 
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